Singularity Analysis and Asymptotics of Bernoulli Sums Singularity Analysis and Asymptotics of Bernoulli Sums Singularity Analysis and Asymptotics of Bernoulli Sums

نویسنده

  • Philippe Flajolet
چکیده

The asymptotic analysis of a class of binomial sums that arise in information theory can be performed in a simple way by means of singularity analysis of generating functions. The method developed extends the range of applicability of singularity analysis techniques to combinatorial sums involving transcendental elements like logarithms or fractional powers. Analyse de singularit e et asymptotique des sommes de Bernoulli R esum e : L'analyse asymptotique d'une classe de sommes qui interviennent en th eorie de l'information peut ^ etre eeectu ee de mani ere simple par analyse de singularit e de s eries g en eratrices. La m ethode d evelopp ee dans ce rapport etend en fait l'applicabilit e des techniques d'analyse de singularit e a des sommes combinatoires comprenant des el ements tran-scendants tels des logarithmes ou des puissances fractionnaires. Abstract. The asymptotic analysis of a class of binomial sums that arise in information theory can be performed in a simple way by means of singularity analysis of generating functions. The method developed extends the range of applicability of singularity analysis techniques to combinatorial sums involving transcendental elements like logarithms or fractional powers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Energy Properties of the Random Displacement Model

We study low-energy properties of the random displacement model, a random Schrödinger operator describing an electron in a randomly deformed lattice. All periodic displacement configurations which minimize the bottom of the spectrum are characterized. While this configuration is essentially unique for dimension greater than one, there are infinitely many different minimizing configurations in t...

متن کامل

Asymptotics for Rank and Crank Moments

Moments of the partition rank and crank statistics have been studied for their connections to combinatorial objects such as Durfee symbols, as well as for their connections to harmonic Maass forms. This paper proves a conjecture due to two of the authors that re ned a conjecture of Garvan. Garvan's original conjecture states that the moments of the crank function are always larger than the mome...

متن کامل

Sums of Products of Bernoulli Numbers, Including Poly-Bernoulli Numbers

We investigate sums of products of Bernoulli numbers including poly-Bernoulli numbers. A relation among these sums and explicit expressions of sums of two and three products are given. As a corollary, we obtain fractional parts of sums of two and three products for negative indices.

متن کامل

Elliptic analogue of the Hardy sums related to elliptic Bernoulli functions

In this paper, we define generalized Hardy-Berndt sums and elliptic analogue of the generalized Hardy-Berndt sums related to elliptic Bernoulli polynomials. We give relations between the Weierstrass ℘(z)-function, Hardy-Bernd sums, theta functions and generalized Dedekind eta function. 2000 Mathematical Subject Classification: Primary 11F20, 11B68; Secondary 14K25, 14H42.

متن کامل

Large Degree Asymptotics of Generalized Bernoulli and Euler Polynomials

Asymptotic expansions are given for large values of n of the generalized Bernoulli polynomials B n (z) and Euler polynomials E n (z). In a previous paper López and Temme (1999) these polynomials have been considered for large values of μ, with n fixed. In the literature no complete description of the large n asymptotics of the considered polynomials is available. We give the general expansions,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998